6 research outputs found

    Interval-based maximum likelihood benchmark for adaptive second-order asynchronous CCI cancellation

    Get PDF
    © Copyright 2007 IEEEA potential usefulness of a priori time-of-arrival (TOA) information for asynchronous co-channel interference (CCI) cancellation is addressed. An interval-based maximum likelihood (ML) benchmark is developed and compared to the averaged ML benchmark and regularized second-order semi-blind (SB) solution that do not use the TOA information. It is found that in short burst scenarios the SB algorithm demonstrates performance that is close to the interval-based ML benchmark. Furthermore, it is shown that SB may outperform the ML benchmarks in the ML breakdown situation. For longer bursts, the known TOA information can significantly improve the performance.Kuzminskiy, A.M. and Abramovich, Y.I

    Multiple-Antenna Interference Cancellation for WLAN with MAC Interference Avoidance in Open Access Networks

    No full text
    <p/> <p>The potential of multiantenna interference cancellation receiver algorithms for increasing the uplink throughput in WLAN systems such as 802.11 is investigated. The medium access control (MAC) in such systems is based on carrier sensing multiple-access with collision avoidance (CSMA/CA), which itself is a powerful tool for the mitigation of intrasystem interference. However, due to the spatial dependence of received signal strengths, it is possible for the collision avoidance mechanism to fail, resulting in packet collisions at the receiver and a reduction in system throughput. The CSMA/CA MAC protocol can be complemented in such scenarios by interference cancellation (IC) algorithms at the physical (PHY) layer. The corresponding gains in throughput are a result of the complex interplay between the PHY and MAC layers. It is shown that semiblind interference cancellation techniques are essential for mitigating the impact of interference bursts, in particular since these are typically asynchronous with respect to the desired signal burst. Semiblind IC algorithms based on second- and higher-order statistics are compared to the conventional no-IC and training-based IC techniques in an open access network (OAN) scenario involving home and visiting users. It is found that the semiblind IC algorithms significantly outperform the other techniques due to the bursty and asynchronous nature of the interference caused by the MAC interference avoidance scheme.</p

    Multiple-Antenna Interference Cancellation for WLAN with MAC Interference Avoidance in Open Access Networks

    Get PDF
    The potential of multiantenna interference cancellation receiver algorithms for increasing the uplink throughput in WLAN systems such as 802.11 is investigated. The medium access control (MAC) in such systems is based on carrier sensing multiple-access with collision avoidance (CSMA/CA), which itself is a powerful tool for the mitigation of intrasystem interference. However, due to the spatial dependence of received signal strengths, it is possible for the collision avoidance mechanism to fail, resulting in packet collisions at the receiver and a reduction in system throughput. The CSMA/CA MAC protocol can be complemented in such scenarios by interference cancellation (IC) algorithms at the physical (PHY) layer. The corresponding gains in throughput are a result of the complex interplay between the PHY and MAC layers. It is shown that semiblind interference cancellation techniques are essential for mitigating the impact of interference bursts, in particular since these are typically asynchronous with respect to the desired signal burst. Semiblind IC algorithms based on second- and higher-order statistics are compared to the conventional no-IC and training-based IC techniques in an open access network (OAN) scenario involving home and visiting users. It is found that the semiblind IC algorithms significantly outperform the other techniques due to the bursty and asynchronous nature of the interference caused by the MAC interference avoidance scheme

    Spectrum Sharing with Decentralized Occupation Control in Rule Regulated Networks

    No full text
    Decentralized dynamic spectrum allocation (DSA) that exploits adaptive antenna array interference mitigation diversity at the receiver, is studied for interference-limited environments with high level of frequency reuse. The system consists of base stations (BSs) that can optimize uplink frequency allocation to their user equipments (UEs) to minimize impact of interference on the useful signal, assuming no control over resource allocation of other BSs sharing the same bands. To this end“, good neighbor” (GN) rules allow effective trade-off between the equilibrium and transient decentralized DSA behavior if the performance targets are adequate to the interference scenario. In this paper, we 1) extend the GN rules by including a spectrum occupation control that allows adaptive selection of the performance targets; 2) derive estimates of absorbing state statistics that allow formulation of applicability areas for different DSA algorithms; 3) define a semi-analytic absorbing Markov chain model and study convergence probabilities and rates of DSA with occupation control including networks with possible partial breaks of the GN rules. For higher-dimension networks, we develop simplified search GN algorithms with occupation and power control and demonstrate their efficiency by means of simulations
    corecore